
Path Projection
For User-Centered Static Analysis Tools

Khoo Yit Phang, Jeff Foster, Michael Hicks, Vibha Sazawal
University of Maryland

PASTE 2008, November 10

1

Success in Static Analysis

Coverity, Fortify, Grammatech, Klocwork, many others
are selling static analysis tools

Microsoft, Mozilla, and others are integrating static
analysis into development

Very active static analysis research community

2

But there’s a problem...

Research has focused on static analysis algorithms

But, programmers use tools, not algorithms

Static analysis tools are only useful if programmers
can understand the results

Our goal: develop ways to make static analysis tools
more user-centered

3

Path Projection
A new UI toolkit for visualizing program paths

call stacks and control-flow paths

Paths are very common in static analysis tool output
Helping users understand paths will help many static
analysis tools
We have applied Path Projection to Locksmith and BLAST

Experimental evaluation
Task: triaging Locksmith error reports
Result: 18% improvement in completion time, similar
accuracy 4

Case Study: Locksmith

Static data race detector for C
Data race: Two or more threads access a shared variable
at the same time

Locksmith reports call stacks to possibly-racing
dereferences

To triage, user must decide whether multiple paths are
simultaneously realizable

Polyvios Pratikakis et al. (PLDI 2006)

5

Locksmith in Standard Viewer

6

Standard Viewer designed to
mimic typical editors/IDEs

Locksmith in Standard Viewer

6

Locksmith error report
with hyperlinks

6

Locksmith Error Report

7

Locksmith Error Report

7

Shared variable

Locksmith Error Report

7

Shared variable

Call stacks
 leading to

race

Locksmith Error Report

7

Thread creation

Locksmith Error Report

7

Thread creation

Dereference

Locksmith Error Report

7

Thread creation

Dereference

w/no locks held

Locksmith Error Report

7

Thread creation

Dereference

w/no locks held

Locksmith Error Report

7

Triaging Locksmith

8

Triage: are these call stacks
simultaneously realizable?

Triaging Locksmith

9

Begin by clicking

Triaging Locksmith

9

Begin by clicking

Triaging Locksmith

10

Thread creation realizable?

Triaging Locksmith

10

Thread creation realizable?

Ye
s,

un
co

nd
iti

on
al

ly
 c

re
at

ed

Triaging Locksmith

11

Keep around context

Triaging Locksmith

11

Keep around context

Easier than remembering

Triaging Locksmith

12

Focus

Triaging Locksmith

12

Call site of
Next call

Triaging Locksmith

13

Skipping a few steps

Triaging Locksmith

13
the dereference, finally!

Triaging Locksmith

14

Triaging Locksmith

14

Screen is very cluttered!

Triaging Locksmith

14

Old context is hidden!

Triaging Locksmith

14

Old context is hidden!

Which function is this?

Where was this called?

A Thousand Cuts

15

A Thousand Cuts

Many little distractions from actual task

Seemingly straightforward task becomes complex!

Read error report

Click hyperlink 1

Read code

Scroll up

Scroll down

Split window

Focus

Back to error report

Click hyperlink 2

Read code

Scroll down

Split window

Focus

Back to error report

Click hyperlink 3

Read code

Scroll down

Split window

Focus

Back to error report

Collapse splits

(resize window, move window...)

15

Path Projection

Designed for tracing paths

16

Path Projection

Designed for tracing paths

Function call inlining:
Inline function directly below
call site

16

Path Projection

Designed for tracing paths

Function call inlining:
Inline function directly below
call site

Path-derived code folding:
Show only implicated lines and
lexical control-blocks

16

Path Projection

Designed for tracing paths

Function call inlining:
Inline function directly below
call site

Path-derived code folding:
Show only implicated lines and
lexical control-blocks

Show as much code as
possible on one screen

16

Path Projection

17
Show paths side by side

Path Projection

17
Show paths side by side

Path Projection

18

Multiple searches
(despite folds)

Path Projection

18

Multiple searches
(despite folds)

Path Projection

19

Continuing example...

Path Projection

19

from 1st
call stack

Path Projection

19

from 2nd
call stack

Path Projection

19

from 2nd
call stack

dereference

Path Projection

19

in loop

condition for
dereference

condition for thread creation

Path Projection

19

not a single click or scroll!

Path Projection

19

not a single click or scroll! no need to look
here too!

Path Projection

20

What’s foffset?

Path Projection

20

Path Projection

21

What’s in read_log?

Path Projection

21

Reveal definition
(initially folded)

Pilot User Study

22

We discovered that static analysis is...

Rocket Science

23

In our pilot studies, non-expert users had great
trouble triaging Locksmith error reports:

ad hoc, inconsistent procedure
neglected some causes of false positives
sidetracked by non-causes of false positives

Even with extensive tutorials!

Rocket Science 101

24

Our solution: triaging checklist

Checklists are tool-/error-specific
Different tools have different imprecision & error reports

Anecdotally, 41% faster at triaging using checklist

Locksmith Triaging Checklist
To triage Locksmith:
check if any pair of paths are simultaneously realizable
different cases: threads in loop, parent-child, child-child

For example:
Source of imprecision: Locksmith is path-insensitive
Possible false positive: child-child threads may be mutually exclusive

25

Locksmith Triaging Checklist
To triage Locksmith:
check if any pair of paths are simultaneously realizable
different cases: threads in loop, parent-child, child-child

For example:
Source of imprecision: Locksmith is path-insensitive
Possible false positive: child-child threads may be mutually exclusive

25

Locksmith Triaging Checklist
To triage Locksmith:
check if any pair of paths are simultaneously realizable
different cases: threads in loop, parent-child, child-child

For example:
Source of imprecision: Locksmith is path-insensitive
Possible false positive: child-child threads may be mutually exclusive

25

User Study

Which is better: Standard Viewer (SV) or Path
Projection (PP)?

Quantitatively: completion time
Qualitatively: user ratings

Data race triaging task using Locksmith

26

User Study Issues

Large variance between participants
Participants have different skill level
Are differences due to participant or UI?

Within-subjects: each participant use both interfaces
Compare UI results for each participant

27

User Study Issues

Order and carryover effect
Participants get better over time (learning)
Participants biased by initial UI or problem

Counter-balance: divide participants into two groups
SV-PP: Standard Viewer, then Path Projection
PP-SV: Path Projection, then Standard Viewer

28

User Study: Locksmith Task

6 trials from Locksmith corpus (unfamiliar to users)

One warning per trial
no need to manage warnings

Only verify that paths are simultaneously realizable
No aliasing/imprecise lock state (future work)

29

User Study: Misc.

8 student participants
3 undergraduates, 5 graduates
Prior experience in C, multithreading (not necessarily C)
Self-rated 3-4 (1: no experience to 5: very experienced)
2 had experience in Locksmith and Eraser

30

Session 1 Session 2
0

10
0

20
0

30
0

40
0

Completion time (sec)
Standard Viewer
Path Projection

Quantitative (Chart guide)

31

Session 1 Session 2
0

10
0

20
0

30
0

40
0

Completion time (sec)
Standard Viewer
Path Projection

Quantitative (Chart guide)

31

Ti
m
e

in
 S

ec
on

ds

Session 1 Session 2
0

10
0

20
0

30
0

40
0

Completion time (sec)
Standard Viewer
Path Projection

Quantitative (Chart guide)

31

Ti
m
e

in
 S

ec
on

ds

PP-SV group

SV-PP group

Faster Completion Time

Session 1 Session 2
0

10
0

20
0

30
0

40
0

Completion time (sec)
Standard Viewer
Path Projection

32

Learning effect
all improved in Session 2*

Faster Completion Time

Session 1 Session 2
0

10
0

20
0

30
0

40
0

Completion time (sec)
Standard Viewer
Path Projection

*statistically significant (p<0.05)
32

Learning effect

Learning effect
all improved in Session 2*

SV-PP improved by 188s*
(effect size d=1.276)

Faster Completion Time

Session 1 Session 2
0

10
0

20
0

30
0

40
0

Completion time (sec)
Standard Viewer
Path Projection

*statistically significant (p<0.05)
32

SV-PP: 188s

Learning effect

Learning effect
all improved in Session 2*

SV-PP improved by 188s*
(effect size d=1.276)

PP-SV improved by 55s*
(effect size d=0.375)

Faster Completion Time

Session 1 Session 2
0

10
0

20
0

30
0

40
0

Completion time (sec)
Standard Viewer
Path Projection

*statistically significant (p<0.05)
32

SV-PP: 188s

PP-SV: 55s

Learning effect

Learning effect
all improved in Session 2*

SV-PP improved by 188s*
(effect size d=1.276)

PP-SV improved by 55s*
(effect size d=0.375)

Similar # mistakes
10 in PP (10.9%), 9 in SV (9.8%)

18% faster on average

Faster Completion Time

Session 1 Session 2
0

10
0

20
0

30
0

40
0

Completion time (sec)
Standard Viewer
Path Projection

*statistically significant (p<0.05)
32

SV-PP: 188s

PP-SV: 55s

Learning effect

Duration where pointer is
over error report

(e.g., using hyperlinks)

Less Use of Error Report

Session 1 Session 2
0

20
40

60
80

10
0

12
0

Duration in error report (sec)
Standard Viewer
Path Projection

33

Duration where pointer is
over error report

(e.g., using hyperlinks)

On average, only 20s with
PP vs. 94s with SV*

Less Use of Error Report

Session 1 Session 2
0

20
40

60
80

10
0

12
0

Duration in error report (sec)
Standard Viewer
Path Projection

*statistically significant (p<0.05)
33

Duration where pointer is
over error report

(e.g., using hyperlinks)

On average, only 20s with
PP vs. 94s with SV*

“Necessary for [SV], but
just a convenience in [PP].”

Less Use of Error Report

Session 1 Session 2
0

20
40

60
80

10
0

12
0

Duration in error report (sec)
Standard Viewer
Path Projection

*statistically significant (p<0.05)
33

Qualitative (Boxplot Guide)

●

●

Quick
to learn

Confident
of answer

Easy to
verify race

Prefer
Path Projection

1
2

3
4

5

Overall impression

Standard Viewer
Path Projection

St
ro

ng
ly

ag
re

e
St

ro
ng

ly
di

sa
gr

ee

We asked participants to rate on 1-5 scale

34

Qualitative (Boxplot Guide)

●

●

Quick
to learn

Confident
of answer

Easy to
verify race

Prefer
Path Projection

1
2

3
4

5

Overall impression

Standard Viewer
Path Projection

St
ro

ng
ly

ag
re

e
St

ro
ng

ly
di

sa
gr

ee

We asked participants to rate on 1-5 scale
Results summarized in boxplots

34

median quartiles max (<1.5quartile)

min (<1.5quartile)

outlier (>1.5quartile)

Prefer Path Projection

●

●

Quick
to learn

Confident
of answer

Easy to
verify race

Prefer
Path Projection

1
2

3
4

5

Overall impression

Standard Viewer
Path Projection

St
ro

ng
ly

ag
re

e
St

ro
ng

ly
di

sa
gr

ee

35

Prefer Path Projection

●

●

Quick
to learn

Confident
of answer

Easy to
verify race

Prefer
Path Projection

1
2

3
4

5

Overall impression

Standard Viewer
Path Projection

St
ro

ng
ly

ag
re

e
St

ro
ng

ly
di

sa
gr

ee

Quick/confident/easy: not statistically significant

35

Prefer Path Projection

●

●

Quick
to learn

Confident
of answer

Easy to
verify race

Prefer
Path Projection

1
2

3
4

5

Overall impression

Standard Viewer
Path Projection

St
ro

ng
ly

ag
re

e
St

ro
ng

ly
di

sa
gr

ee

Quick/confident/easy: not statistically significant
Preference: all but one preferred PP to SV*

*statistically significant (p<0.05) 35

Path Projection Features
Ve

ry

us
ef

ul
No

t
us

ef
ul

●

●

●

Error
report

Checklist Function
inlining

Code
folding

Multi−
query

Query reveals
folded code

1
2

3
4

5

Usefulness of features

36

Path Projection Features
Ve

ry

us
ef

ul
No

t
us

ef
ul

Generally favorable towards PP features*

●

●

●

Error
report

Checklist Function
inlining

Code
folding

Multi−
query

Query reveals
folded code

1
2

3
4

5

Usefulness of features

36*statistically significant (p<0.05)

Path Projection Features
Ve

ry

us
ef

ul
No

t
us

ef
ul

Checklist: “saved me from having to memorize rules”

●

●

●

Error
report

Checklist Function
inlining

Code
folding

Multi−
query

Query reveals
folded code

1
2

3
4

5

Usefulness of features

37

Path Projection Features
Ve

ry

us
ef

ul
No

t
us

ef
ul

Checklist: “saved me from having to memorize rules”
Surprisingly, favored function inlining/code folding
code folding was “the best feature” or “my favorite feature”

●

●

●

Error
report

Checklist Function
inlining

Code
folding

Multi−
query

Query reveals
folded code

1
2

3
4

5

Usefulness of features

37

Threats To Validity
Experimental design limitations

small number of users and trials
not static analysis experts, unfamiliar programs
statistically significant despite limitations

Standard Viewer not “real” editor
deliberate choice to avoid bias from prior experience

The checklist might bias users
checklist designed for Locksmith, not SV or PP
both interfaces use the same checklist

38

Conclusion

Path Projection: a new UI toolkit for visualizing
program paths

Can be used with any static analysis tools
Takes an XML path report as input

Our study showed that it improves completion time
(18%) with similar accuracy and users liked it

Try it at: http://www.cs.umd.edu/projects/PL/PP/

39

http://www.cs.umd.edu/~mwh/papers/pathproj.pdf
http://www.cs.umd.edu/~mwh/papers/pathproj.pdf

