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Success in Static Analysis

Coverity, Fortify, Grammatech, Klocwork, many others 
are selling static analysis tools

Microsoft, Mozilla, and others are integrating static 
analysis into development

Very active static analysis research community
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But there’s a problem...

Research has focused on static analysis algorithms

But, programmers use tools, not algorithms

Static analysis tools are only useful if programmers 
can understand the results

Our goal: develop ways to make static analysis tools 
more user-centered
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Path Projection
A new UI toolkit for visualizing program paths

call stacks and control-flow paths

Paths are very common in static analysis tool output
Helping users understand paths will help many static 
analysis tools
We have applied Path Projection to Locksmith and BLAST

Experimental evaluation
Task: triaging Locksmith error reports
Result: 18% improvement in completion time, similar 
accuracy 4



Case Study: Locksmith

Static data race detector for C 
Data race:  Two or more threads access a shared variable 
at the same time

Locksmith reports call stacks to possibly-racing 
dereferences

To triage, user must decide whether multiple paths are 
simultaneously realizable

Polyvios Pratikakis et al. (PLDI 2006)
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Locksmith in Standard Viewer

6

Standard Viewer designed to 
mimic typical editors/IDEs



Locksmith in Standard Viewer
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Locksmith error report 
with hyperlinks
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Locksmith Error Report
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Locksmith Error Report
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Shared variable



Locksmith Error Report
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Locksmith Error Report
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Locksmith Error Report
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Locksmith Error Report
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Triaging Locksmith
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Triage: are these call stacks 
simultaneously realizable?



Triaging Locksmith
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Begin by clicking



Triaging Locksmith
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Begin by clicking



Triaging Locksmith
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Thread creation realizable?
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Triaging Locksmith
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Keep around context



Triaging Locksmith
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Keep around context

Easier than remembering



Triaging Locksmith
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Focus



Triaging Locksmith
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Call site of
Next call



Triaging Locksmith
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Skipping a few steps



Triaging Locksmith

13
the dereference, finally!



Triaging Locksmith
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Triaging Locksmith
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Screen is very cluttered!



Triaging Locksmith
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Old context is hidden!



Triaging Locksmith
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Old context is hidden!

Which function is this?

Where was this called?



A Thousand Cuts
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A Thousand Cuts

Many little distractions from actual task

Seemingly straightforward task becomes complex!

Read error report

Click hyperlink 1

Read code

Scroll up

Scroll down

Split window

Focus

Back to error report

Click hyperlink 2

Read code

Scroll down

Split window

Focus

Back to error report

Click hyperlink 3

Read code

Scroll down

Split window

Focus

Back to error report

Collapse splits

(resize window, move window...)
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Path Projection

Designed for tracing paths
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Path Projection

Designed for tracing paths

Function call inlining:
Inline function directly below 
call site
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Path Projection

Designed for tracing paths

Function call inlining:
Inline function directly below 
call site

Path-derived code folding:
Show only implicated lines and 
lexical control-blocks
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Path Projection

Designed for tracing paths

Function call inlining:
Inline function directly below 
call site

Path-derived code folding:
Show only implicated lines and 
lexical control-blocks

Show as much code as 
possible on one screen
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Path Projection

17
Show paths side by side



Path Projection

17
Show paths side by side



Path Projection
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Multiple searches 
(despite folds)



Path Projection
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Multiple searches 
(despite folds)



Path Projection
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Continuing example...



Path Projection
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from 1st 
call stack



Path Projection
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from 2nd 
call stack



Path Projection
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from 2nd 
call stack

dereference



Path Projection
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in loop

condition for 
dereference

condition for thread creation



Path Projection
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not a single click or scroll!



Path Projection
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not a single click or scroll! no need to look 
here too!



Path Projection
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What’s foffset?



Path Projection
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Path Projection
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What’s in read_log?



Path Projection
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Reveal definition
(initially folded)



Pilot User Study
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We discovered that static analysis is...



Rocket Science
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In our pilot studies, non-expert users had great 
trouble triaging Locksmith error reports:

ad hoc, inconsistent procedure
neglected some causes of false positives
sidetracked by non-causes of false positives

Even with extensive tutorials!



Rocket Science 101
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Our solution: triaging checklist

Checklists are tool-/error-specific
Different tools have different imprecision & error reports

Anecdotally, 41% faster at triaging using checklist



Locksmith Triaging Checklist
To triage Locksmith:
check if any pair of paths are simultaneously realizable
different cases: threads in loop, parent-child, child-child

For example:
Source of imprecision: Locksmith is path-insensitive
Possible false positive: child-child threads may be mutually exclusive
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User Study

Which is better: Standard Viewer (SV) or Path 
Projection (PP)?

Quantitatively: completion time
Qualitatively: user ratings

Data race triaging task using Locksmith

26



User Study Issues

Large variance between participants
Participants have different skill level
Are differences due to participant or UI?

Within-subjects: each participant use both interfaces
Compare UI results for each participant
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User Study Issues

Order and carryover effect
Participants get better over time (learning)
Participants biased by initial UI or problem

Counter-balance: divide participants into two groups
SV-PP: Standard Viewer, then Path Projection
PP-SV: Path Projection, then Standard Viewer
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User Study: Locksmith Task

6 trials from Locksmith corpus (unfamiliar to users)

One warning per trial
no need to manage warnings

Only verify that paths are simultaneously realizable
No aliasing/imprecise lock state (future work)
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User Study: Misc.

8 student participants
3 undergraduates, 5 graduates
Prior experience in C, multithreading (not necessarily C)
Self-rated 3-4 (1: no experience to 5: very experienced)
2 had experience in Locksmith and Eraser
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Faster Completion Time
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Learning effect
all improved in Session 2*
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Learning effect
all improved in Session 2*

SV-PP improved by 188s*
(effect size d=1.276)

PP-SV improved by 55s*
(effect size d=0.375)

Similar # mistakes
10 in PP (10.9%), 9 in SV (9.8%)

18% faster on average
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Duration where pointer is 
over error report

(e.g., using hyperlinks)
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Duration where pointer is 
over error report

(e.g., using hyperlinks)

On average, only 20s with 
PP vs. 94s with SV*

“Necessary for [SV], but 
just a convenience in [PP].”

Less Use of Error Report 
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We asked participants to rate on 1-5 scale
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We asked participants to rate on 1-5 scale
Results summarized in boxplots
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Quick/confident/easy: not statistically significant
Preference: all but one preferred PP to SV*

*statistically significant (p<0.05) 35
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Checklist: “saved me from having to memorize rules”
Surprisingly, favored function inlining/code folding
code folding was “the best feature” or “my favorite feature”
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Threats To Validity
Experimental design limitations

small number of users and trials
not static analysis experts, unfamiliar programs
statistically significant despite limitations

Standard Viewer not “real” editor
deliberate choice to avoid bias from prior experience

The checklist might bias users
checklist designed for Locksmith, not SV or PP
both interfaces use the same checklist
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Conclusion

Path Projection: a new UI toolkit for visualizing 
program paths

Can be used with any static analysis tools
Takes an XML path report as input

Our study showed that it improves completion time 
(18%) with similar accuracy and users liked it

Try it at: http://www.cs.umd.edu/projects/PL/PP/
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http://www.cs.umd.edu/~mwh/papers/pathproj.pdf
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